© 2015 California Institute of Technology. Government sponsorship acknowledged.

L2 Retrievals from L1B and L1C

Alexander Ruzmaikin, Evan Manning and George Aumann

Jet Propulsion Laboratory, California Institute of Technology

Objective and Selected Set of Products

- Compare L2 means and extremes retrieved from L1B and from L1C
- Temperature and Water Vapor at different pressure levels and atm. heights
- March 1, 2014 products from v6.x (Evan Manning)
- Check different quality controls (QCs)

Why Use L1C for L2?

- L1C removes spurious outliers
- Provides better input for training sets (Neural Net) used in the prior
- Offers more channels for potential retrievals

Selected Granules

L1B Availability AMSU Granules: 240 HSB Granules: 0 AIRS Granules: 240 1 Mar 2014 DoY 60 Aqua Day 4319 Ascending Granules

Land Africa

all data

Add Quality Controls

Near surface

$$QC = [0 \ 1]$$

Means & Extremes at Atm. Heights

Ocean Atlantic

$$QC = [0 \ 1]$$

Ocean Atlantic

At atm. heights

Ocean Pacific

At atm. heights

Tentative Conclusions

- ♦ Differences up to 1 K for air T, 2% for H2O in some pixels
- ♦ Difference is reduced by taking quality controls and averaging but still reaching about 0.5 K in extremes near surface